Transmutation

From paper to reality

Gert Van den Eynde

Why P&T?

To reduce the engineering burden on a geological disposal for nuclear waste by reducing the heat emission and radiotoxicity of the waste to be stored

Heat emission: smaller footprint (surface and volume)

Radiotoxicity: reduce risks for future generations

The Four Building Blocks for P&T

- 1. Reprocessing of LWR irradiated fuel
 - Commercially available for uranium and plutonium (PUREX, DIAMEX, SANEX): TRL8-9
- 2. Fabrication of dedicated transmutation fuel
 - Feasibility proven on lab scale: TRL3-4
- 3. Industrial transmutation: European Facility for Industrial Transmutation
 - Let's look into more detail...
- 4. Reprocessing of transmutation fuel
 - Huh?

Transmuter: design requirements

- Fast spectrum
 - Heavy liquid metal or gas cooling
 - No LLFP transmutation

- Presence of minor actinides
 - Impact on core physics

- Large quantities of minor actinide transmutation
 - Economy of scale

Minor actinide loading has an impact on reactor physics

- Delayed neutron fraction β_{eff}
 - Determines time-constants for reactor control
- Doppler effect
 - Fuel temperature effect
 - PWR vs FR
- Void effect
 - Loss of coolant, boiling
 - PWR vs FR
 - Na vs Pb

Options for minor actinide burning: Fast Reactors

- Fast spectrum critical reactors
 - "Large" experience base from LMFBR based on Na
 - Homogeneous vs heterogeneous loading

Requires modifications in the whole FR fuel cycle

Options for minor actinide burning: ADS

- Accelerator Driven Systems
 - Very (very) limited experience base
 - Subcriticality allows larger quantities of MAs
- IP-EUROTRANS: 6th framework program
 - DM1: Design → XT-ADS (= MYRRHA) and EFIT
 - DM2: ECATS → GUINEVERE
 - DM3: AFTRA
 - DM4: DEMETRA
 - DM5: NUDATRA

EFIT design criteria

- 1. Accelerator Driven System
- 2. Suitable core size and power for (economic) transmutation
- 3. Fast neutron spectrum
 - Lead-cooled or Helium-cooled
- 4. Fuel
 - Uranium-free
 - Plutonium-neutral
 - Fabrication routes?
 - Reprocessing routes (aqua vs pyro)?

EFIT Fuel

- Metallic fuel
 - Good thermal conductivity
 - Too low melting point → requires non-fissile material matrix
 - Difficult to mix TRU elements (limited mutual solubility)
- Nitride fuel
 - Allows high actinide densities
 - Swelling in TRU-nitrides
 - Nitrogen has to be enriched in ¹⁵N to avoid ¹⁴C production
 - Limited experience
- Carbide fuel
 - Aqueous reprocessing difficult
 - Limited experience

EFIT fuel

- Oxide fuel
 - Inert Matrix Fuels
 - CERMET: (Pu,MA)O_{2-x} in Mo metal matrix
 - Good thermal conductivity of the matrix
 - Mo enrichment (price, recovery?)
 - CERCER: (Pu,MA) O_{2-x} in MgO ceramic matrix
 - Better transmutation (less absorption in matrix)
 - Cheaper

These were selected as the reference options

EFIT fuel: isotopic composition

- Uranium-free
- Plutonium as driver
 - Composition from UOX-LWR (90%) and MOX-LWR (10%) spent fuel
 - Pu238/Pu239/Pu240/Pu241/Pu242 = 3.7/46.4/34.1/3.9/11.9
- Minor actinides
 - Composition from UOX-LWR (90%) and MOX-LWR (10%) spent fuel
 - Np237/Am241/Am243/Cm244: 3.9/75.51/16.1/3.0

EFIT fuel pin & core design

- Strategy
 - Subcriticality level + accelerator power
 - → core power at 400 MWth
 - 42-0 approach
 - \rightarrow fixes the Pu/(Pu+MA) ratio to ~46%

- As low as possible reactivity swing
 - Cycle has been fixed at 3 years (cladding), 3 batches
 - → fixes the matrix fraction to 53%

EFIT: transmutation capabilities

EFIT fuel: fabrication & reprocessing

- Designing fuel for transmutation
 - 1. Fabrication
 - Different routes have been tested (powder, solgel)
 - High contents of Cm lead to shielding, remote handling issues
 - TRLs are 2–4

EFIT fuel: fabrication & reprocessing

- Designing fuel for transmutation
 - 1. Fabrication
 - 2. Irradiation
 - Test programs for MA bearing fuels have been conducted
 - Superfact, EFFTRA, SPIN, AM1
 - Conceptual design of EFIT
 - Safety analysis (using scarce available data)

EFIT fuel: fabrication & reprocessing

- Designing fuel for transmutation
 - 1. Fabrication
 - 2. Irradiation
 - 3. Reprocessing
 - Impact of fuel choice on reprocessing
 - CERMET: what about Mo in aqueous reprocessing?
 - Does high Cm content prohibit aqueous reprocessing?
 - Required cooling time?

IP-EUROTRANS conclusions

- Project IP-EUROTRANS was concluded in 2010
- Conceptual design of European Facility For Industrial Transmutation based on Pb or He cooled ADS
- EFIT was used in scenario studies for P&T
 - FP6 PATEROS
 - FP7 ARCAS
- But work on EFIT stopped in 2010...

What next?

- If Europe wants to progress in P&T...
 - 1. Reprocessing of LWR irradiated fuel

There is still a lot of work to be done!

2. Fabrication of dedicated transmutation fuel

3. Industrial transmutation: European Facility for Industrial Transmutation

4. Reprocessing of transmutation fuel

Revisit some options

- Pu neutral?
 - Do we need to "save" our Plutonium for the deployment of a fast reactor fleet?
 - Belgian context? European context?
 - Safeguards?
 - Impact on EFIT fuel cycle and reactivity swing?

Revisit some options

- Pu neutral?
- What minor actinides to transmute?
 - LWR fuel: Cm < 0.01% (Cm-244: 85%, Cm-245: 15%)
 - Cm-244: $T_{1/2} = 18.1y$
 - Significant contributor to decay heat
 - Major source of spontaneous fission neutrons
 - Separation of Cm from Am
 - "Cm decay tank"
 - Shielding, heat removal, safeguards?

Revisit some options

- Pu neutral?
- What minor actinides to transmute?
- Aqueous vs pyrochemical
 - Aqueous suffers from radiation damage of solvents
 - Requires longer cooling times (impact on turn-over)
 - What is needed to push pyrochemical TRLs to the same level?
 - What are the secondary waste streams of both options?

In P&T we design for

Garbage in, garbage out

But preferably the "garbage out" should be less of a problem than the "garbage in"

We need to re-establish an "Integrated Project" for P&T integrating partitioning, fuel fabrication, transmutation systems design, radwaste management, geological disposal design, social sciences, ...

Eendracht maakt macht – L'union fait la force!