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Why P&T?

To reduce the engineering burden on a geological disposal for 
nuclear waste by reducing the heat emission and radiotoxicity of 
the waste to be stored

Heat emission: smaller footprint (surface and volume)

Radiotoxicity: reduce risks for future generations
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The Four Building Blocks for P&T
1. Reprocessing of LWR irradiated fuel

• Commercially available  for uranium and plutonium (PUREX, DIAMEX, SANEX): TRL8−9

2. Fabrication of dedicated transmutation fuel

• Feasibility proven on lab scale: TRL3−4

3. Industrial transmutation: European Facility for Industrial Transmutation

• Let’s look into more detail… 

4. Reprocessing of transmutation fuel

• Huh? 
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Transmuter: design requirements

 Fast spectrum
 Heavy liquid metal or gas cooling
No LLFP transmutation

 Presence of minor actinides
 Impact on core physics

 Large quantities of minor actinide transmutation
 Economy of scale
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Minor actinide loading has an impact on reactor physics

 Delayed neutron fraction βeff
 Determines time-constants for reactor control

 Doppler effect
 Fuel temperature effect
 PWR vs FR

 Void effect
 Loss of coolant, boiling
 PWR vs FR
Na vs Pb
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Options for minor actinide burning: Fast Reactors

 Fast spectrum critical reactors
 “Large” experience base from LMFBR based on Na
 Homogeneous vs heterogeneous loading

 Requires modifications in the whole FR fuel cycle

heterogeneous
7% in OC

homogeneous
2.5%

-2.78 kg/TWhth-3.64 kg/TWhth

heterogeneous
20% 2 x blanket

-0.99 kg/TWhth
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Options for minor actinide burning: ADS

 Accelerator Driven Systems
 Very (very) limited experience base
 Subcriticality allows larger quantities of MAs

 IP-EUROTRANS: 6th framework program
 DM1: Design → XT-ADS (= MYRRHA) and EFIT
 DM2: ECATS → GUINEVERE
 DM3: AFTRA
 DM4: DEMETRA
 DM5: NUDATRA
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EFIT design criteria

1. Accelerator Driven System

2. Suitable core size and power for (economic) transmutation

3. Fast neutron spectrum
• Lead-cooled or Helium-cooled

4. Fuel
• Uranium-free
• Plutonium-neutral
• Fabrication routes?
• Reprocessing routes (aqua vs pyro)?
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EFIT Fuel

 Metallic fuel
 Good thermal conductivity
 Too low melting point → requires non-fissile material matrix
 Difficult to mix TRU elements (limited mutual solubility)

 Nitride fuel
 Allows high actinide densities
 Swelling in TRU-nitrides
Nitrogen has to be enriched in 15N to avoid 14C production
 Limited experience 

 Carbide fuel
 Aqueous reprocessing difficult
 Limited experience
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EFIT fuel

 Oxide fuel
 Inert Matrix Fuels
CERMET: (Pu,MA)O2-x in Mo metal matrix

– Good thermal conductivity of the matrix
– Mo enrichment (price, recovery?)

CERCER: (Pu,MA) O2-x in MgO ceramic matrix
– Better transmutation (less absorption in matrix)
– Cheaper

These were selected as the reference options
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EFIT fuel: isotopic composition

 Uranium-free

 Plutonium as driver
 Composition from UOX-LWR (90%) and MOX-LWR (10%) spent fuel
Pu238/Pu239/Pu240/Pu241/Pu242 = 3.7/46.4/34.1/3.9/11.9

 Minor actinides
 Composition from UOX-LWR (90%) and MOX-LWR (10%) spent fuel
Np237/Am241/Am243/Cm244: 3.9/75.51/16.1/3.0
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EFIT fuel pin & core design

 Strategy
 Subcriticality level + accelerator power

→ core power at 400 MWth

 42-0 approach 
→ fixes the Pu/(Pu+MA) ratio to ~46%

 As low as possible reactivity swing
Cycle has been fixed at 3 years (cladding), 3 batches

→ fixes the matrix fraction to 53%
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EFIT: transmutation capabilities
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EFIT fuel: fabrication & reprocessing

 Designing fuel for transmutation

1. Fabrication
• Different routes have been tested (powder, solgel)
• High contents of Cm lead to shielding, remote handling issues
• TRLs are 2−4
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EFIT fuel: fabrication & reprocessing

 Designing fuel for transmutation

1. Fabrication

2. Irradiation
• Test programs for MA bearing fuels have been conducted

• Superfact, EFFTRA, SPIN, AM1
• Conceptual design of EFIT

• Safety analysis (using scarce available data)
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EFIT fuel: fabrication & reprocessing

 Designing fuel for transmutation

1. Fabrication

2. Irradiation

3. Reprocessing
• Impact of fuel choice on reprocessing

• CERMET: what about Mo in aqueous reprocessing? 
• Does high Cm content prohibit aqueous reprocessing? 
• Required cooling time? 
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IP-EUROTRANS conclusions

 Project IP-EUROTRANS was concluded in 2010

 Conceptual design of European Facility For Industrial 
Transmutation based on Pb or He cooled ADS

 EFIT was used in scenario studies for P&T
 FP6 PATEROS
 FP7 ARCAS

 But work on EFIT stopped in 2010… 
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What next?

 If Europe wants to progress in P&T…
There is still a lot of 
work to be done!
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Revisit some options

 Pu neutral? 
 Do we need to “save” our Plutonium for the deployment of a fast 

reactor fleet? 

Belgian context? European context?

Safeguards?

 Impact on EFIT fuel cycle and reactivity swing?
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Revisit some options

 Pu neutral? 

 What minor actinides to transmute?
 LWR fuel: Cm < 0.01% (Cm-244: 85%, Cm-245: 15%)
 Cm-244: T½ = 18.1y
Significant contributor to decay heat
Major source of spontaneous fission neutrons

 Separation of Cm from Am
 “Cm decay tank”
Shielding, heat removal, safeguards ?
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Revisit some options

 Pu neutral? 

 What minor actinides to transmute?

 Aqueous vs pyrochemical
 Aqueous suffers from radiation damage of solvents
Requires longer cooling times (impact on turn-over)

What is needed to push pyrochemical TRLs to the same level?

What are the secondary waste streams of both options? 
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Conclusions

In P&T we design for

Garbage in, garbage out

But preferably the “garbage out” should be less of a problem than 
the “garbage in”

We need to re-establish an “Integrated Project” for P&T integrating 
partitioning, fuel fabrication, transmutation systems design, radwaste
management, geological disposal design, social sciences, … 

Eendracht maakt macht – L’union fait la force !
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