DE LA RECHERCHE À L'INDUSTRIE

TRANSMEETS,

a H2020 project proposal

for investigation of **TRANS**mutation fuels in generation 4 reactors: **M**odeling, **ExperimEntal daTa and Simulation**

www.cea.fr

A. GALLAIS-DURING

GENIORS STAKEHOLDERS EVENT AND TOPICAL DAY

Context

TRANSMEETS scientific and technical content

- Objectives
- 3 pillars
- 4 scientific and technical Work Packages

A new stage has been reached in Am-bearing fuel developments : Fabrication process developments, Behaviour under irradiation, Modelling and simulation, Preliminary core design & safety performance

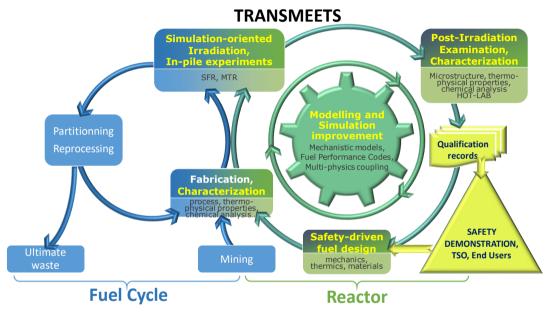
Context: Still some gaps ...

...to demonstrate the compliance of MA-bearing fuels with the stringent safety requirements of Gen IV fast reactors and ESNII prototypes:

- (U,Pu,MA)O_{2-x} and (U, MA)O_{2-x} still at an early stage of qualification / development
- Consequences on safety of their very specific behaviour and properties, still to be determined: mainly the risk of cladding failure and of fuel melting
 - MA \Rightarrow high He production during (and after) irradiation \Rightarrow swelling and/or release \Rightarrow FCMI + Actinides and FP redistribution \Rightarrow JOG \Rightarrow FCCI
 - MA \Rightarrow lower melting temperature + thermal conductivity \Rightarrow lower margin to melt.
- Need for further improvement of Fuel Performance Codes (FPC): cornerstone of fuel behaviour evaluation and safety analyses
 - Models relevant for the assessment of the risk of cladding failure and to a first evaluation of the source term in case of a hypothetical accident :
 - Models relevant for the assessment of the risk of fuel melting
 - **Reliable data** necessary for models and code development and validation
 - Multiphysics simulation
 - Specific tests in off-normal / accidental situations to support safety assessments

How to address the aforementioned key issues: the TRANSMEETS European project proposal

TRANSmutation fuels in generation 4 reactors,
Modeling, ExperimEntal daTa and Simulation



- Main purpose: increase robustness, accuracy and predictability of fuel performance codes for investigation of safety-related behaviour of Am-bearing fuels :
 - \Box (U,Pu,Am)O₂ with [Am] ~ 3% 5%: homogeneous recycling fuels
 - \Box (U,Am)O₂ with [Am] ~ 10% 15%: heterogeneous recycling fuels
- Major objectives:
 - Extension of the validation domain of models/codes for (U,Pu,Am)O₂ & (U,Am)O₂
 - **Development of fuel performance codes** for normal and off-normal conditions:
 - Simulation of the behaviour of Am-bearing fuels in normal & off-normal situations:
 - Train young researchers, bring them knowledge and skills spanning the full area of simulation / qualification / safety assessment, from simulation to experiments, give them the opportunity to work in different research environments such as hot-labs or supercomputer centers

TRANSMEETS: Overall concept, 3 pillars

TRANSMEETS : cross-road of fuel cycle and reactor challenges

TRANSMEETS scientific and technical content built on 3 pillars

- Development of simulation and modelling tools
- Generation of new data : combination of experimental examinations of irradiated Am-bearing fuels, characterization of fuel properties and modelling
- □ From normal conditions towards off-normal and accidental situations

WP1: Investigation of helium, fission gases, fission products and actinides

- Generation of data relevant to the risk of cladding failure assessment
- Combination of PIE, separate effect techniques and modelling methods

European irradiations

	SPHERE:	Needed models/ properties	Post-Irradiation Examinations	Separate effect tests	Modelling methods
	(U,Pu,Am)O ₂ MARINE: - (U,Am)O ₂	Gas (He and FG) release	Puncturing of MARINE pins	KEMS on SPHERE, MARINE and MARIOS fuels, thermal treatments on MARIOS fuels	Neutronic analysis (He & FG inventory) Atomistic calculation
B	2 pins: spherepac pellets	Gaseous swelling	Gamma scan spectrometry of MARINE pins, Hydrostatic density measurements of DIAMINO disks		
	MARIOS:	Irradiated fuel composition	Radio-chemical analyses of SPHERE, MARINE and MARIOS fuels		Neutronic analysis (He, FG & FP inventory)
	(U,Am)O ₂	Actinide/FP redistribution/ migration	SEM, EPMA, XDS of MARINE fuel (+complement on SPHERE)		Neutronic analysis (He, FG & FP inventory)
	4 mini-pins 6 disks 2 microstructues	Thermo- chemistry of fuel & FP, FP phase formation		KEMS on specifically synthetized fuels	CALPHAD modelling Empirical potential calculation
	2 temperatures				

WP2: Characterization of thermal & thermochemical properties and effect of irradiation

Generation of data relevant for risk of fuel melting assessment
Combination of separate effect techniques and modelling methods

Needed models/ properties	Separate effect tests	Modelling methods
Thermal conductivity	Thermal diffusivity measurements on SPHERE, MARINE and MARIOS fuels	
Melting point	Laser pyrometry on SPHERE, MARINE and MARIOS fuels	
Thermo-dynamic data for fuel phase diagram: enthalpy of reaction, heat capacity	KEMS, drop calorimetry on specifically synthetized fuels	CALPHAD modelling atomistic calculation

Securing and sharing knowledge: issue of a dedicated catalogue:

Ensure and maximize knowledge preservation at a crucial point in time : latest results obtained on performance and properties of SPHERE, MARIOS and MARINE fresh and irradiated fuels.

Simulation tools to be developed: TRANSURANUS and GERMINAL fuel performance codes

Fuel design and qualification of the ESNII reactor concepts:

- TRANSURANUS for the design of MYRRHA, ALFRED
- GERMINAL developed for ASTRID design

Mesoscopic scale:

- transfer and integration of the results from experimental and modelling above-mentioned activities, derivation of new correlations for model parameters
- new models for thermal, thermo-mechanical and thermochemical behaviour of Am-bearing fuels
- upgrade of TRANSURAUS and GERMINAL FPC
- benchmark of the improved version of FPC : SPHERE and MARINE irradiations + comparison with PIE

Macroscopic scale:

- new simulation methods coupling various descriptions of fuels (neutronics: SERPENT, thermo-mechanical: OpenFOAM, safety analyses: SIMMER, BELLA)
- objective to tackle accidental situations

Dedicated methodology : optimization of modelling and computational time for calculations dedicated to the design and licensing of new Am-bearing fuel pins

In normal conditions:

- Improvement of the thermo-mechanical design of a pin for transmutation
- thermal-hydraulic features of corresponding sub-assembly

In off-normal conditions:

- selection and simulation of a relevant accidental scenario and core configuration to perform representative simulations of Am-bearing fuels in off-normal situations
- prioritization of additional R&D modelling development needed by FPC and recommendations for additional experimental needs for code validation.
- Identification and pre-design of an irradiation experiment in transient conditions, to provide the necessary data for validation of FPC, enabling them to support safety assessments for the operation of Am-bearing fuel.

- TRANSMEETS is a relevant and innovative project to increase robustness, accuracy and predictability of Fuel Performance Codes
- Strong support for demonstration of the compliance of (U,Pu,Am)O₂ and (U,Am)O₂ fuels, with stringent safety requirements of Gen IV fast reactors and ESNII prototypes
- Outcomes of mutual benefit for:
 - Gen IV reactors safety assessments
 - In the longer term, management of ultimate radioactive wastes and reduction of the footprint impact of deep geological repositories
- Essential for improving public acceptance of nuclear energy

- Supported by ESNII, and in line with the goals set forward by ESNII and SNETP as a whole
- Unanimously supported and endorsed by the EERA-JPNM steering committee and obtained the EERA-JPNM label
- Submitted last September in the H2020 Euratom WP 18 call, in NFRP 2 section: "Model development and safety assessments for Generation IV reactors"
- European Commission decision expected by February-March 2019

DE LA RECHERCHE À L'INDUSTRIE

Thanks to all the TRANSMEETS partners and especially to the WP leaders:

-Daniel Freis (JRC)

-Anna Smith (TUD)

- -Lelio Luzzi (Polimi)
- -Brian Boer (SCK•CEN)
- -Sara Bortot (KTH)
- -Gabor Szendro (LGI)

Thank you for your attention

www.cea.fr

A. GALLAIS-DURING

GENIORS STAKEHOLDERS EVENT AND TOPICAL DAY