

Challenges in implementing separation processes – moving from lab to plant scale

Mike Carrott, Ross Harris, Chris Rhodes, Robin Taylor

Context

- No advanced reprocessing of MA partitioning plants planned in Europe or North America
 - No government policies to deploy
 - No industry pull
 - But widespread interest in advanced fuel cycles for sustainability reasons
- We are in an R&D phase
 - Developing options
 - National Lab led
 - Technology push
- How do we transition from lab to plant?

- Long timescale to transition from research to operating plant
- Need R&D now to deploy mid-century
- A fully closed cycle requires integration of different technologies

Contents

- Context
- R&D goals
 - Research led development stages
- Testing
 - Example from Thorp development
- Design & engineering
 - Moving to the design-led process
 - Space batteries example

R&D pathway

- Coordination of R&D
- Down-selection of processes
- R&D goal is demonstration
- ~TRL 6
- Develop credible options
- Address perceived problems
- Prove benefits
- Collaborate
- Integrate into fuel cycle
- Be ready to transition to industry

Use of TRLs

TRL	Function	Definition
9	Proof of performance	Multiple years of operational experience established at industrial scale. Processing and recycle of minor actinide fuels / targets.
8		Full scale process demonstrated in a limited operational environment.
7		Prototype system demonstrated under conditions fully representative of operations.
6	Proof of principle	Engineering or pilot scale testing of technology component or process step. Process flowsheets proven through hot tests using spent fuel. Process models validated.
5		Technology component or process step validated at bench scale under relevant conditions. Process models developed. Proof of principle hot tests using spent fuel.
4		Technology component or process step validated under laboratory conditions. Tests performed using active materials in simulated feeds. Fundamental properties measured.
3	Proof of concept	Lab scale tests to prove concepts, fundamental data obtained
2		Technology application developed and options investigated
1		Initial concepts are proposed and basic principles established

Research focused on what's important to decision makers

Modelling & simulation

- Explain basic data & direct new experiments
- Useful in flowsheet design
- Essential in maloperations & sensitivity analyses
- Example malop dynamic simulation:
 - recycle & accumulation of An/Ln in i-SANEX process
 - Addition of water to scrub acid feed
 - F. McLachlan et al., Modelling of Innovative SANEX Process Maloperations, Procedia Chemistry 21, 2016, pp. 109-116

Underpinning the flowsheet & safety case

Dealing with the unexpected

- Flowsheet testing (alpha active and hot tests) is essential to:
 - Demonstrate flowsheet performance
 - Validate process models
 - Investigate impact of malop conditions
 - Identify potential issues not highlighted by fundamental studies
- Despite extensive testing and modelling of the flowsheet operational issues may still arise during commissioning
- An early issue for the development of Thorp flowsheet:
 - Tc behaviour in 1BX column (identified by alpha active / pilot plant trials)

Trouble with Technetium (Tc)

- Separation of U/Pu achieved using U(IV) stabilised with hydrazine.
- Alpha active testing and pilot plant trials identified excessive consumption of hydrazine occurring in the process
- Tc is co-extracted with U and Pu in HA/HS contactor.
- Excessive consumption attributed to Tc catalysed oxidation of hydrazine by nitric acid.

$$U^{4+} + 2Pu^{4+} \rightarrow 2Pu^{3+} + UO_2^{2+} + 4H^+$$

 $HNO_2 + N_2H_5^+ \rightarrow HN_3 + H_3O^+ + H_2O$

 $U(IV) / N_2H_4$

Consequences for U/Pu separation

- Excess hydrazine added to process to ensure stability of U(IV) and Pu(III)
- Operation of U/Pu separation column modified from aqueous continuous to solvent continuous (validated by additional trials using pulsed column test rig).

A Hazard not identified cannot be protected against

Piper Alpha

- Explosion and subsequent fire
- Fatalities 167

Process Safety

- It is important to consider safety at each stage of development.
 - Changes and improvements to the process.
 - New designs at different scales.
- HAZOP study developed for use in industry.

Phase

Operations

Deployment

Development

TRL

TRL9

TRL8

TRL7

TRL6

TRL5

Stage

Active

Inactive

Operations

Commissioning

Commissioning

Large Scale

Pilot Scale

HAZOP Approach

CONCEPT DESIGN LEVEL

Feed materials, hazards, process / technology

HAZOP 0

Main hazards

Hazard Management Strategy (HMS)

SYSTEM DESIGN LEVEL

Re-use of process stage design / process if possible

DESIGN CONFIRMATION LEVEL

Re-use of existing system level P&ID level design if possible

Confirm design features deliver chosen HMS

Identify potential key safety measures

HAZOP 2

Confirm design meets HMS approach

Finalise key safety measures

HAZOP Study – Hazard and Operability Study

1	Node	Guide words Propert	Possible Cause	<u>Consequence</u>	<u>Indications/</u> <u>Safeguards</u> Gu	ide Works	Additional Notes
1. D	issolver	Flow None					
	-	Basic Prop	erty Words		Basic	Guide Words	
•	Flow	Flow Less		N	pne		
	Temperate	ire			ore of		
	Pressure	Flow More		Le	ss of		
	Level			P	art of		
	Concentra	tion Flow As Well As		А	s well as		
	Radiation			0	ther		
	Other	Flow Reverse		R	everse		
•		Temperature Modifional Pr	operty Words		Addition	nal Guide Words	
	Oxygen			E	rly		
•	Viscosity	Temperature Less		La	ite		,
	Density						ΚL
	Acidity	Pressure None					
	Settle						
	Dissolve	Pressure Less					

Different key words depending upon stage in design process.

SACSESS & GENIORS

- HAZOP style safety reviews performed for Euro GANEX under SACSESS & GENIORS Programmes
- Key words specific to EU flowsheet projects developed under SACSESS
- Think Tank adopted HAZOP style process output will be used in GENIORS safety review deliverable

²⁴¹Am Space Battery Project

Project Initiates from a requirement

$$^{241}_{94}Pu$$
 $\xrightarrow{\beta}$ $^{14.4}y$ $\xrightarrow{241}_{95}Am$

- Chem. Sep Flowsheet produced which can achieve the required separation.
- This then requires expansion to include all the process 'blocks' required. i.e. the job doesn't start with Pu nitrate and end with Am nitrate
- Assign and scale equipment to each operation

Layout the Process

- Layout process flow
- Add mechanical movement equipment
- Build containment around this
- Understand faults / hazards & iterate

Build

Layout the Plant

Summary – steps in moving from lab to plant scales

- Stick with reference processes => flowsheet optimisation
- Greater use of modelling & simulation => process models
- Underpin process safety => maloperations
- Address interfaces between head end, SX & conversion stages
- Process monitoring & control needed
- Understand S&T gaps => basic research needed
- What are the plans for demonstration tests to reach TRL 6?
- Increase communications with designers & engineers => layout the plant
- Integration with fuels & transmutation => feeds & products

